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Abstract
Two schemes of the quantization of dynamical variables of dissipative systems
are studied with an example of a two-level atom interacting with phonons
scattered from an environment. Transformations of relevant Fock-space
operators or rigged-Fock-space operators are proposed in order to diagonalize
their equations of motion. It is shown that the damping of dispersionless
phonons leads to the formation of a quasi-stationary state of the system—a
polaron, which is found in both approaches. A time dependence of the polaron
energy and the spectral lineshape of the two-level subsystem are evaluated. A
transformation diagonalizing the equations of motion of the relevant classical
problem (of a harmonic oscillator coupled to a field of damped waves) is found
to be similar to the quantum case.

PACS numbers: 03.65.Yz, 71.38.−k, 78.67.−n

1. Introduction

Rigged Hilbert spaces are the objects of recent studies on the possibility of reformulation of the
quantum mechanics in order to include the instability of states [1]. Also, they are considered
as a tool of the classical statistical mechanics [2] enabling one to extend the Koopman–von
Neumann probabilistic formulation of the dynamics of large systems. The idea is based on
the change of real eigenvalues—the energies into complex eigenvalues whose imaginary parts
relate to the times of damping of particular (Gamov) modes of classical or quantum dynamical
variables. One uses this formalism (e.g. [3]) for the description of resonances in the chaotic
dynamics [4]. In order to express the extended quantum mechanics in the language of damped
(quasi-) particles, rigged Fock spaces and Gamov algebras of operators [5] are constructed.

To this date, a number of studies on Gamov modes of different classical and quantum
(linear or non-linear) models of physical systems are available (e.g. [5, 6]). The elementary
processes in these systems lead to the decay of all particles involved in them, which makes
it hard to interpret observations in time. The problem of the polaron formed in a system of
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a two-level atom coupled to phonons (or to other excitations of a solid—magnons, etc) is the
simplest one to study processes of the dressing of quantum states taking place without change
in the atom subsystem. This dressing (the polaron formation) is not an instant process since
the excited state of the atom (or an exciton) is created bare. One can determine characteristic
times of the dephasing from measurements of the time dependence of an intensity of light
emission from the atom or via observation how the energy of the emitted photons depends on
time (e.g. [7]). I consider a mechanism of the polaron formation different from the dressing
with phonons belonging to a frequency continuum that is accompanied by the emission from
the atom of a small amount of the energy of the excited state via wave packets of phonons [8].
When the excitations (I will refer to them as phonons) are dispersionless (the phonon energy
is independent of wavevector), they cannot form wave packets and the dressing process must
be mediated by a dissipative environment. As we shall see, such a process can be described
exactly using a Gamov algebra.

Different systems of a spatially confined particle interacting with optical (dispersionless)
phonons can be considered for the observation of the effect. The present description is useful
for the electron or exciton in a big-enough quantum dot since it effectively interacts (via the
Frohlich coupling) with the longitudinal optical phonons of a very narrow band of frequencies.
The width of this band decreases exponentially with the square of the quantum-dot diameter
[9]. Then, the damping of phonons results in the acceleration of the initial decoherence
compared to that which is due to their dispersion [10], however, the direct coupling of the
carrier to the acoustical phonons leads to a complication of the polaronic state. Another
candidate is a particle interacting with optical phonons confined in a nanostructure (a quantum
dot, a nanocrystal, etc) since their energy spectrum is discrete.

The similarity of the probabilistic-classical and quantum formalisms is important for the
development of the quantization methods [11]. However, the formulation of the classical
mechanics in the framework of the rigged-Hilbert-space approach leads to non-Newtonian
effects contradicting the standard description of the dissipation. For example, let us consider a
damped harmonic oscillator with the free-oscillation frequency ω and the damping coefficient
γ moving with the Hamiltonian and the relaxation function

H = 1
2 (π2 + ω2x2), R = γπ2, (1)

where x, π denote the position and momentum satisfying the Hamilton equations

π̇ = −δH
δx

− δR
δ(δH/δπ)

= −ω2x − 2γπ, ẋ = δH
δπ

= π. (2)

The motion of an observable A is described with the equation

−i
d

dt
A = LA (3)

using the Liouville operator L determined via (2). Transforming canonically the momentum
π into p = π + γ x, we write the Liouvillian with the complex variables

q± = (ω′/2)1/2(x ∓ ip/ω′) (4)

(here ω′ = (ω2 − γ 2)1/2) as

L = ω′
(

q+ ∂

∂q+
− q− ∂

∂q−

)
+ iγ

(
q+ ∂

∂q+
+ q− ∂

∂q−

)
. (5)

Thus, the vectors of the decaying states (Gamov vectors) moving with the Liouvillian

LrHs = (ω′ − iγ )

(
q+ ∂

∂q+
− q− ∂

∂q−

)
(6)
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are not functions of the phase-space variables of the damped harmonic oscillator. On the other
hand, as we shall see with an example of the polaron problem, results of the quantum mechanics
(especially those found with the Green-function techniques) coincide with predictions of the
Gamov-algebra methods. Thus, the correspondence between the equations of motion of
dynamical variables of a classical dissipative system and of its quantum counterpart demands
investigation.

The classical counterpart of the polaron problem—the harmonic oscillator nonlinearly
interacting with a deformation field of damped (via interaction with an environment) modes
can be formulated with two different approaches, similar to the damped harmonic oscillator
described above. It provides different schemes of its quantization. The model is the simplest
one describing macroscopic systems displaying photo-induced phase transformations [12] (for
example, a crystal of molecules changing its state from ionic to neutral under a light impulse).

In this work the polaron problem including the damping of the deformation (phonon)
modes is solved with the use of the Hilbert-space and rigged-Hilbert-space methods for the
classical and quantum cases. The differences of results of both approaches are interpreted. The
harmonic oscillator (the classical case) and the two-level system (the quantum case) coupled
to a deformation field of damped (phonon) modes are considered assuming that the interaction
Hamiltonian is linear in the deformation. The quantum description is developed from the well-
known ‘independent-boson model’ [13] applying the idea of the quantum damped oscillator
(a review of [14]). A time dependence of the energy of the polaron (resulting from the
inclusion of the dissipation) and the spectral intensity of the two-level subsystem are found
using canonical transformations of the operators of the corresponding Fock spaces. These are
modified versions of the transformation introduced by Lee, Low and Pines [15, 16]. Similar
transformation of the phase-space variables of the classical model is found to diagonalize
their equations of motion. I refer to some facts known from observations of relevant physical
systems which can be predicted with the model.

In the second section, the quantum system is analysed using Green-function and Gamov-
algebra methods while the solution of the classical problem including the dissipation is
presented in the third section. In the fourth section, the quantization of the dissipative
equations of motion is studied with relevance to the atom-damped-phonon problem. Finally,
applicability of different formalisms is considered in conclusions.

2. Formation and decay of the polaron in a quantum system

The Hamiltonian of a quantum two-level system interacting with phonons which are
damped due to their coupling to the environment consists of the terms representing the free
Hamiltonians of the atom (an exciton), the phonons, and the environment and of two terms
of the interaction, H = Hex + Hph + Hex-ph + Henv + Hph-env. The atom–phonon part takes the
form

Hex + Hph + Hex-ph = ωexa
†a +

∑
k

�kb
†
kbk +

1

N1/2

∑
k

Fka
†a

(
bk + b

†
−k

)
. (7)

Here, a(†), b
(†)
k denote the annihilation (creation) operators of the exciton and of the phonon,

respectively, N denotes the number of lattice sites. The effective interaction formfactors
Fk differ from those of the corresponding translation–invariant interactions relevant to bulk
systems (e.g. Frohlich interaction [13]). They can be obtained from the bulk formfactors by
changing the Kronecker delta expressing the conservation of the momentum in an elementary
process of the particle collision into the integral

∫
ψ(x)∗ eikxψ(x) d3x, whereψ(x) denotes the

wavefunction of the excited state of the atom (or the exciton).
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The solution of the problem of the electron (exciton) interacting with phonons using Green
functions exists and can be adapted to our system. Following [17], the causal Green function
of the exciton G(t) = −i〈0|T {a(t)a†}|0〉 is determined via the mass operator

�(ω) = i

2πN

∑
k

∫ ∞

−∞
dω′ F 2

k 	k(ω + ω′, ω′)G(ω + ω′)Dk(ω
′), (8)

where the phonon Green function is defined as Dk(ω) = −i〈0|T {
bk(t)+b

†
−k(t), b−k +b

†
k

}|0〉,
and 	k(ω, ω′) denotes the Fourier transform of the vertex function

	k(t, t
′) = −N1/2

Fk

δG−1(t)

δ
{[

bk + b
†
−k

]
(t ′)

} . (9)

The phonon function can be decomposed into a sum of advanced and retarded one-particle
functions Dk(ω) = G

(R)
k (ω) + G

(A)
k (ω) = −iθ(t)〈0|bk(t)b

†
k|0〉 − iθ(−t)〈0|b−kb

†
−k(t)|0〉.

Neglecting temperature corrections, they take the form

G
(R)
k (ω) = 1

ω − �′
k + iγk

, G
(A)
k (ω) = − 1

ω + �′
k − iγk

. (10)

Their complex frequency �′
k − iγk can be determined via the lowest order in Hph−env

contribution to the polarization operator �(ω, k) as �′
k − iγk = �k + �(�k + i0+, k). In the

calculations of �(ω), the vertex function is changed into a constant Z ≈ 1 playing the role
of the renormalization factor of the exciton Green function. This approximation discussed in
detail in [18] corresponds to neglecting reducible diagrams of the perturbation expansion of
G(ω) in the atom-phonon interaction [19] and leads to

�(ω) = 1

N

∑
k

F 2
k

Z−1

ω − �′
k − ωex − �(ω − �′

k) + iγk
. (11)

For simplicity of the form of the correlation function A(ω) = −2 Im G(ω + i0+), we
assume that the phonons are dispersionless and that their lifetime is independent of the
wavevector (�k = �, γk = 	). In particular, this assumption is valid for optical phonons
when only the phonons belonging to a small part of the Brillouin zone effectively interact
with the atom. Calculations of the coefficients of damping of the optical phonons due to
the anharmonic decay into phonons of different modes (which is believed to be the most
effective mechanism of the scattering) performed for different polar materials show that the
wavevector-dependent contributions to them are small compared with their parts independent
of wavevector (e.g. [20]). For example, this condition is satisfied in a system of the long-
wavelength longitudinal-optical phonons interacting with the atom via the Frohlich coupling.
Usually, they are damped due to the spontaneous decay into a pair of longitudinal-acoustical
phonons (the so-called Klemens process) or into a pair of a big-energy phonon and a transverse-
acoustical phonon (the Valee-Bogani or Ridley processes) [21].

Taking the vertex function constant, the plot of the correlation function A(ω) (for a
weak coupling case [13], Re �(ωpol) < �) consists of two peaks—one of them is centred
at the frequency of the polaron ωpol = ωex + Re �(ωpol) and the second one is centred at the
frequency of the bound state of the polaron and one phonon ωpol + �′. The half width of
the one-phonon peak equal to 	 corresponds to the inversion of the initial decoherence time (the
time of the polaron formation). One can reproduce the spectral intensity of the atom excitation
solving the equations of motion of its annihilation (creation) operators of the relevant Gamov
algebra aout

(
a
†
in
)
. They create the pair of Gamov vectors of the atom subsystem |e〉in,out 〈e|

such that limt→−∞ |e〉in = 0, limt→∞(out〈e|) = 0, and out〈e|e〉in = 1 acting on the state vector
of the unexcited atom following |e〉in = a

†
in|g〉,out 〈e| = 〈g|aout. The exact correlation function
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Figure 1. The correlation function A(ω) for parameters: Re �/�′ = 0.1 and Re �/	 = 2 (top
curve), Re �/	 = 4 (bottom curve).

A(ω) found from the retarded Green function G(t) = −iθ(t)〈0|[aout(t), a
†
in
]|0〉 is plotted in

figure 1. It differs from the approximate correlation function by maxima corresponding to
many-phonon bound states at the high-frequency region. Let us study the exact solution.

Modifying the Hamiltonian (7) by changing the creation and annihilation operators of
the Fock algebra into the operators of the Gamov algebra, one removes the terms Henv,
Hph-env from the Hamiltonian introducing complex frequencies of the non-interacting unstable
particles. The non-Hermitean Hamiltonian takes the form

H = zexa
†
inaout +

∑
k

Zkb
†
kinbkout +

1

N1/2

∑
k

Fka
†
inaout

(
bkout + b

†
−kin

)
, (12)

where zex = ωex − i0+, Zk = �′
k − iγk, and the creation and annihilation operators aout, a

†
in

commute to unity similar as bkout and b
†
kin. The model is solvable using the non-unitary

transformation 
 = es of the Gamov vectors, where

s = 1

N1/2

∑
k

Fk

Zk
a†

inaout
(
bkout − b

†
−kin

)
, (13)

conserving the averages over the Gamov states. The inverse transformation takes the form

∗ = e−s , where the operation (·)∗ ≡ [(·)†]′ is defined as the conjunction of the Hermitean
coupling—denoted (·)† and of the complex conjugate of the particle frequencies—denoted
(·)′. One finds new creation (annihilation) operators diagonalizing the Hamiltonian

H = zpolã
†
inãout +

∑
k

Zkb̃
†
kinb̃kout, (14)

where for any operator O; Õ ≡ 
O
∗. Here zpol = zex − N−1 ∑
k F 2

k

/
Zk = zex − �. For

constant phonon frequencies Zk = Z0, following the standard calculations developed for the
‘independent-boson model’ [13], we use the relations

ãout = aout e−η, ã†
in = eηa†

in, ãoutã
†
in = aouta

†
in (15)

where η = N−1/2 ∑
k Fk/Zk

(
bkout −b

†
−kin

)
, and aouta

†
inaout = aout, a

†
inaouta

†
in = a

†
in, to evaluate

the one-particle Green function of the atom-excitation

G(t) = −iθ(t) exp{−izpolt − �/Z0(1 − e−iZ0t )}. (16)
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The imaginary part of its Fourier transform

G(ω) = e−�/Z0

∞∑
l=0

(�/Z0)
l

l!

1

ω − zpol − lZ0
(17)

determines the spectral intensity plotted in figure 1.
Let us note that the quantity −Im �(ωpol) ≈ −Im zpol = 1/N

∑
k F 2

k γk
/(

�′2
k + γ 2

k

) =
−Im zpol represents the damping coefficient of a particle dressed with phonons (the polaron).
Here, according to [16],F 2

k

/[
N

(
�′2

k + γ 2
k

)]
is equal to the probability that there is excited one

phonon of the wavevector k when the system is in the polaronic state. Thus, it is predicted by
both solutions that the non-zero probability per time unit of the decay of phonons contributing
to the polar cloud surrounding the atom (equal to 2γk) results in a finite lifetime of the polaronic
state. Since there are no processes changing the two-level subsystem, the damping (polaron
decay) is connected to the instability of the cloud. Similar instability was suggested to be
observed as slow dephasing of the Wannier exciton confined in a semiconductor quantum dot
[22, 10].

3. Classical polaron formation

A macroscopic system of polarizable molecules coupled to the deformation field is considered
as a model system displaying photo-induced structure changes. In our classical treatment
of its dynamics, oscillatory variables x, π , and Xk, �k represent the total polarization and
the momentum of the molecule subsystem, and a deformation and momentum of a mode
characterized with the wavevector k, respectively. The non-interacting excited molecule
is treated as an oscillator of the frequency ω and the dephasing of the complex variables
q± = (ω/2)1/2(x ∓ iπ/ω) results from a time dependence of the amplitude of the local
elementary-dipole oscillation. Thus, the dephasing of the variable q± is a consequence of a
change of the system structure compared to its structure just after the photo-excitation. The
Hamiltonian is of the form

H
(
q+, q−, Xk1 , Xk2 , . . . , �k1 ,�k2,...

) = ωq+q− +
1

2

∑
k

(
�2

k + �2
kX

2
k

)

+
1

N1/2

∑
k

(2�′
k)

1/2Fkq
+q−Xk. (18)

Writing the Liouville operator with the complex variables q±,Q±
k ≡

(�′
k/2)1/2(Xk ∓ iPk/�′

k), wherePk ≡ �k + γkXk denotes the canonically transformed mo-
mentum, we include the dissipation introducing the damping of the deformation modes. Fol-
lowing the considerations in introduction, the relaxation function R

(
�k1 ,�k2,...

) = ∑
k γk�

2
k

leads to the Liouvillian

L = ω

(
q+ ∂

∂q+
− q− ∂

∂q−

)
+

∑
k

�′
k

(
Q+

k
∂

∂Q+
k

− Q−
k

∂

∂Q−
k

)
+ i

∑
k

γk

(
Q+

k
∂

∂Q+
k

+ Q−
k

∂

∂Q−
k

)
+

1

N1/2

∑
k

Fk

(
q+ ∂

∂q+
− q− ∂

∂q−

) (
Q−

k + Q+
−k

)

− 1

N1/2

∑
k

Fkq
+q−

(
∂

∂Q−
k

− ∂

∂Q+
−k

)
(19)

which will be diagonalized below (here �′
k = (�2

k − γ 2
k )1/2). Using the fact that the

product J = q+q− is a non-negative constant of motion (L(q+q−) = 0) and that the kinetic
energy of the deformation subsystem takes the simple form T

(
�k1 ,�k2 , . . .

) = 1/2
∑

k �2
k,
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we find the deformation corresponding to the minimum of the potential energy X′
k =

−(2�′
k/N)1/2JFk

/
�2

k. The value J = 0 corresponds to the case when the molecular
subsystem is neutral (unpolarized).

The transformation of the dynamical-variable set
{
q+, q−,Q+

k,Q
−
k

}
into

q̃± = q± exp

{
± 1

N1/2

∑
k

�′
kFk

�2
k

(
Q−

k − Q+
−k

) ± i

N1/2

∑
k

γkFk

�2
k

(
Q−

k + Q+
−k

)}
,

Q̃k
± = Q±

k +
1

N1/2
(�′

k ± iγk)
Fk

�2
k

q+q− (20)

enables one to simplify the Liouvillian as

L =
(

ω − 2

N1/2

∑
k

�′
kF

2
k

�2
k

q̃+q̃−
) (

q̃+ ∂

∂q̃+
− q̃− ∂

∂q̃−

)
+

∑
k

�′
k

(
Q̃+

k
∂

∂Q̃+
k

− Q̃−
k

∂

∂Q̃−
k

)
+ i

∑
k

γk

(
Q̃+

k
∂

∂Q̃+
k

+ Q̃−
k

∂

∂Q̃−
k

)

−
∑

k

2iγkFk

�2
k

q̃+q̃−
[
(�′

k − iγk)
∂

∂Q̃−
−k

+ (�′
k + iγk)

∂

∂Q̃+
k

]
. (21)

Since q̃+q̃− = q+q− = J , one finds the equations of motion of the dynamical variables
q̃±, Q̃±

k to be linear. The transformation inverse to (20) gives the time dependence of the
deformation variable

Xk(t) = (
Ak e−i�′

kt + A∗
k ei�′

kt
)

e−γkt − JFk(2�′
k)

1/2

N1/2�2
k

. (22)

It tends to X′
k in the long-time limit in which the lattice stabilizes (Ẋk(t → ∞) =

�k(t → ∞) = 0).
The intensity of the light scattering from the molecular subsystem depends on the

velocity of the transition of energy between it and the deformation subsystem. Let us
calculate the energy of the molecular subsystem (the oscillator) as the function of time
Hm(t) = ωJ + N−1/2 ∑

k(2�′
k)

1/2FkJXk(t). We will denote its time derivative as P(t).
Assuming that only one phonon mode of the wavevector kR is excited, we evaluate the
differential intensity

[P(t) − P(0−)]/P (0−) = J2/J1
[
�′

kR

/
γkR

sin
(
�′

kR
t
)

+ cos
(
�′

kR
t
)]

e−γkR
t − 1, (23)

where J1, J2 denote the values of J before and after the photo-excitation at t = 0. The
differential reflection spectra of some physical systems were found to display similar damped
oscillations with the phonon frequency related to the wavelength of the scattered photons (e.g.
organic charge-transfer crystal–tetrathiafalvalen-p-chloranil [23], collosal-magnetoresistance
compound Pr0.7Ca0.3MnO3 [24]).

4. Quantization of the dissipative equations of motion

In this section, the polaron formation is described via quantization of the equations of motion
of the macroscopic variables of the third section. Thus, the description is performed with
variables averaged over the degrees of freedom of the environment.

The state of the subsystem of the atom and phonons (A) is described with a reduced
density operator (ρA(B) = TrB(A)(ρ), B denotes the environment). The time dependence of
a Heisenberg-picture observable ÔA = TrB[Ô(1A ⊗ ρB)] of this subsystem is expected to
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satisfy equations of motion similar to classical equations of motion (including dissipation) if
there exists a corresponding classical observable. Some elements of the set of the quantized
canonically conjugated variables of the system averaged over a basis of the environment states
are not expected to satisfy the canonical commutation relations (see [25, 26]), namely

[x, π ] = i, [Xk,�k] = i e−2γkt . (24)

After performing the canonical transformation

Pk = �k + γkXk (25)

of the deformational variables, the equations of motion of the exciton-annihilation (-creation)
operator a′(†) = (ωex/2)1/2(x + (−)iπ/ωex) and of the operators of the phonon field and
momentum operators can be written as

iȧ′ = ωexa
′ +

(
�2

k − γ 2
k

)1/4
(

2

N

)1/2 ∑
k

Fka
′Xk,

Ṗ k = −(
�2

k − γ 2
k

)
Xk − γkPk − (

�2
k − γ 2

k

)1/4
(

2

N

)1/2

Fka
′†a′, (26)

Ẋk = Pk − γkXk.

In order to diagonalize the first equation of (26), I propose to transform the reduced-
Fock-space operators OA of the set {a′, a′†, Xk, Pk} into new operators ÕA (denoted
{ã′, ã′†, X̃k, P̃ k}) with the unitary operation

ÕA = esOA e−s ,
(27)

s ≡ i
21/2(

�2
k − γ 2

k

)1/4

∑
k

�′
kã

′†ã′P̃ k + 21/2
(
�2

k − γ 2
k

)1/4 ∑
k

�′′
kã

′†ã′X̃k.

It results in the transformation of the equations of motion, which is performed expanding the
operators ˙̃OA and OA as

˙̃OA = ȮA + [ṡ, OA] + [s, ȮA] + 1
2 [s, [ṡ, OA]] + 1

2 [ṡ, [s,OA]] + 1
2 [s, [s, ȮA]] + O(s3),

(28)
OA = ÕA + [ÕA, s] + 1

2 [s, [s, ÕA]] + O(s3).

The conditions of diagonalization of the equation of motion of ã′ take the form[(
�2

k − γ 2
k

)1/2 ∓ iγk
]
�′

k ± [(
�2

k − γ 2
k

)1/2 ∓ iγk
]
�′′

k = N−1/2Fk (29)

for Fk = F−k. They determine �′
k, �′′

k to be similar as relevant coefficients of the
transformation q± → q̃± in (20) and, for constant phonon frequencies �k = �, γk = 	, they
lead to the final equations of motion

˙̃a′ = −i[ωex − � + �(e−2	t − 1)]ã′,

˙̃P k = −(�2 − 	2)X̃k − 	P̃ k −
(

2

N

)1/2

(�2 − 	2)1/4Fk(1 − e−2	t )ã′†ã′, (30)

˙̃Xk = P̃ k − 	X̃k,

where � = N−1(�2 − 	2)1/2/�2 ∑
k F 2

k . The solution of the first equation is the operator

ã′(t) = exp

{
−i

[
(ωex − 2�)t − �

2	
(e−2	t − 1)

]}
ã′. (31)
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The other equations of (30) give

X̃k(t) = 1

21/2(�2 − 	2)1/4

(
e−i(�2−	2)1/2t−	t b̃k + ei(�2−	2)1/2t−	t b̃+

−k

)
− 21/2(�2 − 	2)1/4

N1/2�2
Fk(1 − e−2	t )ã′†ã′,

P̃ k(t) = i
(�2 − 	2)1/4

21/2

(
ei(�2−	2)1/2t−	t b̃+

−k − e−i(�2−	2)1/2t−	t b̃k
)

− 21/2(�2 − 	2)1/4

N1/2�2
	Fk(1 + e−2	t )ã′†ã′.

(32)

The time of decrease of the energy of the quasiparticle τf = 1/2	 determined from (30) is
also the time of the creation of a polaronic (deformation) cloud surrounding the excited atom,
which is seen in the time dependence of X̃k(t). Note that the momentum �̃k(t) satisfies the
condition of stability of the polaronic cloud limt→∞ �̃k(t) = 0.

The present formalism can also be applied in order to describe the two-level system
interacting with overdamped excitations. Then, one would solve equations (26) with the
condition 	 > � for which the field Xk cannot be canonically quantized. Thus, we would
consider a mixed quantum-classical dynamics which was recently shown not to be relevant for
non-dissipative (Hamilton) systems [27]. For 	 � �, one would find the deformation field
and momentum

Xk(t) = −21/2(�2 − 	2)1/4

N1/2�2
Fk(1 − e−2	t )a′†a′,

(33)

Pk(t) = −21/2(�2 − 	2)1/4

N1/2�2
	Fk(1 + e−2	t )a′†a′,

and the time dependence of the polaron frequency of the form

ω(t) = ωex + 2�(e−2	t − 1). (34)

Similar time dependence of the luminescence frequency has been observed with the confined
in a quantum dot excitons forming magnetic polarons in a paramagnetic medium [7, 28]. The
polaron-formation time was found there to be equal to the spin relaxation time. However, the
observation of the Frohlich-polaron formation is more difficult since optical-phonon relaxation
is usually much faster than the spin relaxation.

In order to compare the present solution to that obtained with the Green-function method
or using the Gamov algebra, we evaluate the function A′(ω) defined as the Fourier transform
of the correlation function A′(t) = 〈0′|a′(t)a′†|0′〉, where |0′〉 = |g〉 ⊗ |vac〉 denotes the
conjunction of the vectors of the atom ground state |g〉 and of the phonon vacuum |vac〉. The
above function is defined as an average over the vacuum state of the subsystem while in
the previous section we have calculated the relevant correlation function as an average
over the vacuum of the whole system. In order to find

A′(ω) =
∫ ∞

−∞
θ(t) ei(ω+i0+)t 〈0′|a′(t)a′†|0′〉 dt +

∫ ∞

−∞
θ(−t) ei(ω−i0+)t 〈0′|a′(t)a′†|0′〉 dt, (35)

it is necessary to determine ã′(t) for a negative time. We use the finding of Bateman, who
established that the description of the damped harmonic oscillator in the framework of the
Hamilton formalism demands introduction of a dual dynamical variable [29]. It is a physical
variable for t < 0 fulfilling the transformed via 	 → −	 equations of motion of the damped
harmonic oscillator. Thus, for t < 0, we arrive at

ã′(t) = exp

{
−i

[
(ωex − 2�)t +

�

2	
(e2	t − 1)

]}
ã′. (36)
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Figure 2. The correlation function A′(ω) for parameters: �′/� = 0.1 and �/	 = 2 (top curve),
�/	 = 4 (bottom curve). Here �′ ≡ (�2 − 	2)1/2.

Following standard calculations for the ‘independent-boson model’, we use the relations

ã′ = a′ e−η, ã′† = eηa′†, ã′ã′† = a′a′† (37)

found with a′a′†a′ = a′, a′†a′a′† = a′†. Here η = ∑
k

[
(−�′

k + �′′
k)b̃

†
−k + (�′

k + �k′′)b̃k
] −

i4	�/�2. Applying the operator-disentanglement procedure described in [13, 30], for t > 0,
we have

〈0′|a′(t)a′†|0′〉 = e−i[(ωex−2�)t− �
2	

(e−2	t−1)]

× exp

{
1

2

(
�′′2

k − �′2
k

)(
1 + e−2	t − 2 e−i(�2−	2)1/2t−	t

)}
. (38)

The corresponding average for a negative time can be written when changing 	 into −	.
Expanding the above average and performing its Fourier transformation one arrives at the
correlation function of the form A′(ω) = 2 Im{I (ω)}, where

I (ω) = e− �′
2�

−i �
2	

∞∑
l=0

l∑
h=0

1

h!(l − h)!

(
i�

2	
− �′

2�

)l−h (
�′

�

)h

× 1

ω − ωex + 2� − h(�2 − 	2)1/2 + i(2l − h)	 + i0+
, (39)

and �′ = ��/(�2 − 	2)1/2. The plot of A′(ω) (figure 2) consists of peaks positioned at the
frequencies corresponding to the polaron and to the states of the polaron bound to one-or-more
phonons as the plot of the spectral intensity A(ω) found in the second section. However, A′(ω)

does not satisfy the condition of positivity of the spectral intensities of bosons and fermions
at ω > 0. It does not apply since A′(t) is calculated with the operators averaged over the
environment state. Thus, A′(ω) does not describe optical spectra, similar as the corresponding
functions for systems described with Hamiltonians depending on time.

In [31], the spectra for such a system (an atom in a classical field periodic in time)
were found calculating directly the optical transition probability per time unit. When we add
the atom–photon-interaction term Hint = Vωc†ωac + H.c. to the Hamiltonian, (cω denotes the
annihilation operator of the photon of the frequency ω, a†

c—the creation operator of the exciton
interacting with the photon), it takes the form

lim
T →∞

∣∣〈cωa†
c(T )

〉∣∣2/
T = lim

T →∞
|Vω|2

∣∣∣∣∣
∫ T

0
〈0′|a′(t)a′†|0′〉 eiωt dt

∣∣∣∣∣
2/

T . (40)
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The above method is not effective when
∫ T

0 〈0′|a′(t)a′†|0′〉 eiωt dt is not a periodic function of
T as it is in our case. However, the total transition probability

|Vω|2
∣∣∣∣∣
∫ ∞

0
〈0′|a′(t)a′†|0′〉 eiωt dt

∣∣∣∣∣
2

= |Vω|2|I (ω)|2 (41)

can be estimated for all ω except one point ω = ωex − 2�, and the plot of |I (ω)|2 determines
the spectral lineshape. Its characteristic topic is an asymmetry of the peaks not present in
A(ω) of section 2.

5. Conclusions

We have solved the problem of the polaron in a medium of damped excitations with different
approaches and referred to some experimental facts supporting their results. Let us note that
the Gamov vectors of the system of the classical harmonic oscillator interacting with damped
deformation waves can be determined, similarly as for the problem of the radiation damping in
classical systems described by Petrosky et al [32]. Its Liouville operator received by the similar
change of signs in the third term of (19) as described in the introduction is diagonalizable via
the transformation of the variables

{
q±,Q±

k

}
into

q̃± = q± exp

{
± 1

N1/2

∑
k

Fk

Zk

(
Q−

k − Q+
−k

)}
, (42)

Q̃±
k = Q±

k +
1

N1/2

Fk

Zk
q+q−. (43)

Similar to the quantum case discussed in section 2, the irreversibility inherent in this model is
not related to the reduction of the phase space. Here, the damping of the variable q̃± (a finite
lifetime of the classical polaron) is analogous to the description of the Brownian motion while
in the deterministic model of the third section the polaron mode is stable.

The preparation of the environment state before a measurement may be a key to the
choice of the relevant scheme of quantization. As example observables, let us consider the
correlators calculated in the second and fourth sections. The observation of A(t) (the scalar
product of the ket a†|0〉 and of the bra 〈0|a(t), where |0〉 denotes the absolute-vacuum state)
demands preparation of the environment state while A′(t) (the scalar product of the ket a′†|0′〉
and of the bra 〈0′|a′(t), where |0′〉 denotes the vacuum state of the atom–phonon subsystem,
a′(t) = TrB{ρBa(t)}) is determined with the environment being in a mixed state. In particular,
since it is easier to prepare the environment of a single atom than the environment of an
ensemble of atoms (because the excitation of all atoms cannot take place at exactly the same
time), one can expect that different formalisms described here can be applied for the one-atom
spectroscopy or for the spectroscopy of big systems.
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